These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interconversion between Methoxylated and Hydroxylated Polychlorinated Biphenyls in Rice Plants: An Important but Overlooked Metabolic Pathway. Author: Sun J, Pan L, Su Z, Zhan Y, Zhu L. Journal: Environ Sci Technol; 2016 Apr 05; 50(7):3668-75. PubMed ID: 26928534. Abstract: To date, there is limited knowledge on the methoxylation of polychlorinated biphenyls (PCBs) and the relationship between hydroxylated polychlorinated biphenyls (OH-PCBs) and methoxylated polychlorinated biphenyls (MeO-PCBs) in organisms. In this study, rice (Oryza sativa L.) was chosen as the model organism to determine the metabolism of PCBs in plants. Limited para-substituted 4'-OH-CB-61 (major metabolite) and 4'-MeO-CB-61 (minor metabolite) were found after a 5-day exposure to CB-61, while ortho- and meta-substituted products were not detected. Interconversion between OH-PCBs and MeO-PCBs in organisms was observed for the first time. The demethylation ratio of 4'-MeO-CB-61 was 18 times higher than the methylation ratio of 4'-OH-CB-61, indicating that formation of OH-PCBs was easier than formation of MeO-PCBs. The transformation products were generated in the roots after 24 h of exposure. The results of in vivo and in vitro exposure studies show that the rice itself played a key role in the whole transformation processes, while endophytes were jointly responsible for hydroxylation of PCBs and demethylation of MeO-PCBs. Metabolic pathways of PCBs, OH-PCBs, and MeO-PCBs in intact rice plants are proposed. The findings are important in understanding the fate of PCBs and the source of OH-PCBs in the environment.[Abstract] [Full Text] [Related] [New Search]