These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Survey of indigenous entomopathogenic fungi and evaluation of their pathogenicity against the carmine spider mite, Tetranychus cinnabarinus (Boisd.), and the whitefly, Bemisia tabaci (Genn.) biotype B.
    Author: Topuz E, Erler F, Gumrukcu E.
    Journal: Pest Manag Sci; 2016 Dec; 72(12):2273-2279. PubMed ID: 26929052.
    Abstract:
    BACKGROUND: The carmine spider mite, Tetranychus cinnabarinus, and the silverleaf whitefly, Bemisia tabaci, are serious pests of both field- and greenhouse-grown crops in south-western Turkey. Control of these pests has been heavily dependent upon chemical pesticides. The objectives of this study were to investigate the occurrence of indigenous entomopathogenic fungi (EPF) in field populations of T. cinnabarinus and B. tabaci, and to evaluate their pathogenicity against these pests. For this purpose, a survey of EPF isolated from field-collected samples of both pests was carried out in Antalya in 2010 and 2011 using the dilution plating method. RESULTS: Four indigenous Beauveria bassiana isolates (TUR1-B, TUR2-B, FIN1-B, FIN2-B) were recovered. In pathogenicity bioassays with T. cinnabarinus and B. tabaci biotype B, all the isolates tested were pathogenic to some of the biological stages of both pests to varying degrees. FIN1-B and TUR1-B caused mortalities of up to 50 and 45%, respectively, in adults of T. cinnabarinus, and of over 79 and 37%, respectively, in pupae of B. tabaci with 107 conidia mL-1 suspensions under laboratory conditions 10 days after inoculation. FIN2-B and TUR2-B had mortalities of 19.45 and 12.28%, respectively, in adults of T. cinnabarinus, and of 6.78 and 8.18%, respectively, in pupae of B. tabaci. None of the isolates had an effect on eggs of either species and larvae of the mite. CONCLUSION: Overall results suggest that isolates FIN1-B and TUR1-B have potential for management of T. cinnabarinus and B. tabaci. © 2016 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]