These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antiapoptotic and neuroprotective role of Curcumin in Pentylenetetrazole (PTZ) induced kindling model in rat. Author: Saha L, Chakrabarti A, Kumari S, Bhatia A, Banerjee D. Journal: Indian J Exp Biol; 2016 Feb; 54(2):133-41. PubMed ID: 26934781. Abstract: Kindling, a sub threshold chemical or electrical stimulation, increases seizure duration and enhances accompanied behavior until it reaches a sort of equilibrium state. The present study aimed to explore the effect of curcumin on the development of kindling in PTZ kindled rats and its role in apoptosis and neuronal damage. In a PTZ kindled Wistar rat model, different doses of curcumin (100, 200 and 300 mg/kg) were administrated orally one hour before the PTZ injections on alternate day during the whole kindling days. The following parameters were compared between control and experimental groups: the course of kindling, stages of seizures, Histopathological scoring of hippocampus, antioxidant parameters in the hippocampus, DNA fragmentation and caspase-3 expression in hippocampus, and neuron-specific enolase in the blood. One way ANOVA followed by Bonferroni post hoc analysis and Fischer's Exact test were used for statistical analyses. PTZ, 30 mg/kg, induced kindling in rats after 32.0 ± 1.4 days. Curcumin showed dose-dependent anti-seizure effect. Curcumin (300 mg/kg) significantly increased the latency to myoclonic jerks, clonic seizures as well as generalized tonic-clonic seizures, improved the seizure score and decreased the number of myoclonic jerks. PTZ kindling induced a significant neuronal injury, oxidative stress and apoptosis which were reversed by pretreatment with curcumin in a dose-dependent manner. Our study suggests that curcumin has a potential antiepileptogenic effect on kindling-induced epileptogenesis.[Abstract] [Full Text] [Related] [New Search]