These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel aluminum-BODIPY dyads: intriguing dual-emission via photoinduced energy transfer. Author: Sohn C, Jeong J, Lee JH, Choi BH, Hwang H, Bae GT, Lee KM, Park MH. Journal: Dalton Trans; 2016 Apr 07; 45(13):5825-32. PubMed ID: 26937761. Abstract: Three novel BODIPY-based heterodinuclear complexes, [salen(3,5-(t)Bu)2Al-(OC6H4-BODIPY)] (6), [salen(3,5-(t)Bu)2Al-(OC6F2H2-BODIPY)] (7), and [(mq)2Al-(OC6H4-BODIPY)] (8) (salen = N,N'-bis(salicylidene)ethylenediamine, BODIPY = 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, and mq = methyl-8-quinolinolato) were prepared and characterized by multinuclear NMR spectroscopy. The specific structures of 6-8 were also determined by single crystal X-ray analysis. In particular, the salen-based heterodinuclear complexes 6 and 7 exhibited higher thermal stability (Td5 = 309 and 306 °C, respectively) than that of the closely related mononuclear aluminum or BODIPY compounds, except for 8. The UV/vis absorption and PL spectra for 6 and 7 indicated a significant photoinduced energy transfer from the aluminum-salen moiety to the BODIPY group in an intramolecular manner. Theoretical calculations revealed independent transition states of the aluminum-salen moiety or the BODIPY group in the Al(III)-BODIPY dyads, further supporting these experimental results.[Abstract] [Full Text] [Related] [New Search]