These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.
    Author: Chen X, Yang X.
    Journal: J Phys Chem Lett; 2016 Mar 17; 7(6):1035-41. PubMed ID: 26937854.
    Abstract:
    Inspired by the active site structure of [FeFe]-hydrogenase, we built a series of iron dicarbonyl diphosphine complexes with pendant amines and predicted their potentials to catalyze the hydrogenation of CO2 to methanol using density functional theory. Among the proposed iron complexes, [(P(tBu)2N(tBu)2H)FeH(CO)2(COOH)](+) (5COOH) is the most active one with a total free energy barrier of 23.7 kcal/mol. Such a low barrier indicates that 5COOH is a very promising low-cost catalyst for high-efficiency conversion of CO2 and H2 to methanol under mild conditions. For comparison, we also examined Bullock's Cp iron diphosphine complex with pendant amines, [(P(tBu)2N(tBu)2H)FeHCp(C5F4N)](+) (5Cp-C5F4N), as a catalyst for hydrogenation of CO2 to methanol and obtained a total free energy barrier of 27.6 kcal/mol, which indicates that 5Cp-C5F4N could also catalyze the conversion of CO2 and H2 to methanol but has a much lower efficiency than our newly designed iron complexes.
    [Abstract] [Full Text] [Related] [New Search]