These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of water chemistry on the destabilization and sedimentation of commercial TiO2 nanoparticles: Role of double-layer compression and charge neutralization.
    Author: Hsiung CE, Lien HL, Galliano AE, Yeh CS, Shih YH.
    Journal: Chemosphere; 2016 May; 151():145-51. PubMed ID: 26938678.
    Abstract:
    Nanomaterials are considered to be emerging contaminants because their release into the environment could cause a threat to our ecosystem and human health. This study aims to evaluate the effects of pH, ions, and humic acid on the destabilization and sedimentation of commercial stabilized TiO2 nanoparticles (NPs) in aquatic environments. The average hydrodynamic size of TiO2 NPs was determined to be 52 ± 19 nm by dynamic light scattering. The zero point charge (ZPC) of the commercial TiO2 NPs was found to occur at pH 6. The stability of commercial TiO2 NPs is independent of its concentration in the range of 50-200 mg/L. In the absence of NaCl, the commercial TiO2 NPs rapidly settled down near pHzpc when the aggregated nanoparticle size surpassed 1 μm. However, when the commercial TiO2 NPs aggregated with the increase of NaCl concentrations, the large aggregates (>1 μm) were found to remain suspended. For example, even at the critical aggregation concentration of NaCl (100 meq/L), TiO2 NP aggregates suspended for 45 min and then slowly deposited. This implies an increase in the exposure risk of NPs. In the presence of Suwannee river humic acid (SRHA), the commercial TiO2 NPs did not settle down until the SRHA concentration increased to 20 mg/L, and were seen to restabilize at SRHA concentrations of 50 mg/L. The uncommon behaviors of the commercial TiO2 NPs we observed may be attributed to the different destabilization mechanisms caused by different species (i.e., NaCl and SRHA) in water.
    [Abstract] [Full Text] [Related] [New Search]