These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Pseudoxanthoma elasticum-like disease with deficiency of vitamin K-dependent clotting factors and cutis laxa features].
    Author: Gusdorf L, Mitcov M, Maradeix S, Cunat S, Martin L, Cribier B.
    Journal: Ann Dermatol Venereol; 2016 Apr; 143(4):279-83. PubMed ID: 26944767.
    Abstract:
    BACKGROUND: Pseudoxanthoma elasticum (PXE)-like syndrome is characterized by the association of PXE and cutis laxa (CL) features with a deficiency of vitamin K-dependent clotting factors. It was first described in 1971 and was identified as a distinct genetic entity in 2007 with analysis of the GGCX (γ-glutamyl carboxylase) gene, which is involved in congenital deficiency in vitamin K-dependent clotting factors. Here we report a new case of this extremely rare syndrome. PATIENTS AND METHODS: A 23-year-old female patient was seen for the emergence of loose and redundant skin following extensive weight loss. She also presented a deficiency of vitamin K-dependent clotting factors. Physical examination revealed excessive, leathery skin folds in the axillary and neck regions. A skin biopsy revealed polymorphous and fragmented elastic fibers in the reticular dermis. These were mineralized, as was demonstrated by Von Kossa staining. The clinical features of CL associated with the histopathological features of PXE and vitamin K-dependent clotting factor deficiency led us to a diagnosis of PXE-like syndrome. A molecular study of the GGCX gene showed compound heterozygosity. DISCUSSION: The GGCX gene is usually responsible for PXE-like syndrome. GGCX encodes a γ-glutamyl carboxylase necessary for activation of gla-proteins. Gla-proteins are involved both in coagulation factors in the liver and in the prevention of ectopic mineralization of soft tissues. Uncarboxylated forms of gla-proteins in fibroblast would thus enable mineralization and fragmentation of elastic fibers.
    [Abstract] [Full Text] [Related] [New Search]