These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.
    Author: Kimura K, Tanida M, Nagata N, Inaba Y, Watanabe H, Nagashimada M, Ota T, Asahara S, Kido Y, Matsumoto M, Toshinai K, Nakazato M, Shibamoto T, Kaneko S, Kasuga M, Inoue H.
    Journal: Cell Rep; 2016 Mar 15; 14(10):2362-74. PubMed ID: 26947072.
    Abstract:
    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.
    [Abstract] [Full Text] [Related] [New Search]