These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 4-Phenylbutyric acid regulates CCl4-induced acute hepatic dyslipidemia in a mouse model: A mechanism-based PK/PD study. Author: Lee HY, Marahatta A, Bhandary B, Kim HR, Chae HJ. Journal: Eur J Pharmacol; 2016 Apr 15; 777():104-12. PubMed ID: 26948310. Abstract: Endoplasmic reticulum (ER) stress and associated protein aggregation are closely associated with human diseases, including alterations in hepatic lipid metabolism. Inhibition of ER stress can have a significant effect on the prevention of hepatic dyslipidemia. Here, we studied the role of 4-phenylbutyric acid (4-PBA), a chemical chaperone, on ER stress-induced hepatic lipid accumulation. We studied ER stress induction following CCl4 exposure and delineated mechanisms of the CCl4-induced ER stress response in liver tissue from mice. CCl4 affected the formation of disulfide bonds through excessive hyper-oxidation of protein disulfide isomerase (PDI). Increased complex formation between PDI and its client proteins persisted in CCl4-exposed samples. Conversely, 4-PBA inhibited ER stress via secretion of apolipoprotein B and prevention of hepatic lipid accumulation. We also studied the mechanism-based pharmacokinetic and pharmacodynamic profiles and identified the ER stress-related proteins GRP78 and CHOP, along with plasma apolipoprotein B and triglyceride levels, as novel biomarkers of ER stress-induced hepatic lipid accumulation. ER stress and its clinical relevance for therapeutic approaches were well correlated with the activity of the ER stress regulator 4-PBA, which may be a promising drug candidate for the treatment of hepatic lipid accumulation, such as hepatic steatosis.[Abstract] [Full Text] [Related] [New Search]