These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural and Material Mechanical Quality of Femoral Shafts in Rats Exposed to Simulated High Altitude from Infancy to Adulthood. Author: Bozzini C, Picasso EO, Champin GM, Alippi RM, Bozzini CE. Journal: High Alt Med Biol; 2016 Mar; 17(1):50-3. PubMed ID: 26949914. Abstract: The growth of the body and bone mass and the mechanical properties of appendicular bone are impaired in immature rats exposed to different simulated high altitudes (SHA) (1850-5450 m) between the 32nd and the 74th days of postnatal life. Now, we report the effects of exposure to 4100 m on the above cited variables in female rats from infancy (age: 1 month) to adulthood (age: 8 months) to define the occurrence of catch up and to establish whether the effects of altitude are transient or permanent. The ex vivo right femur was mechanically tested in three-point bending. Body weight and length, and structural (loads at yielding and fracture, and stiffness) and architectural (diaphyseal cross-sectional area, cortical area, and cross-sectional moment of inertia) properties were measured at 2, 4, 6, and 8 months of exposure to SHA. The negative influence of hypoxia on all variables was similar at different ages or, in other words, the difference among ages was maintained at any extent of hypoxia. Hypoxia did not affect the elastic modulus, thus suggesting that the mechanical properties of the bone tissue were maintained. Catch up did not occur. The resulting osteopenic bone remained appropriate to its mechanical function during the entire exposure to SHA.[Abstract] [Full Text] [Related] [New Search]