These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Soluble guanylate cyclase activation during ischemic injury in mice protects against postischemic inflammation at the mitochondrial level. Author: Wang DZ, Jones AW, Wang WZ, Wang M, Korthuis RJ. Journal: Am J Physiol Gastrointest Liver Physiol; 2016 May 01; 310(9):G747-56. PubMed ID: 26950856. Abstract: The aim was to determine whether treatment with BAY 60-2770, a selective activator of oxidized soluble guanylate cyclase (sGC), near the end of an ischemic event would prevent postischemic inflammation and mitochondrial dysfunction in wild-type (WT) and heme oxygenase-1 KO (HO-1(-/-)) mice. This protocol prevented increases in leukocyte rolling (LR) and adhesion (LA) to intestinal venules along with elevated TNFα and circulating neutrophil levels that accompany ischemia-reperfusion (I/R) in both animal models. We further hypothesized that a component of BAY 60-2770 treatment involves maintenance of mitochondrial membrane integrity during I/R. Measurements on isolated enterocytes of calcein fluorescence (mitochondrial permeability) and JC-1 fluorescence ratio (mitochondrial membrane potential) were reduced by I/R, indicating formation of mitochondrial permeability transition pores (mPTP). These effects were abrogated by BAY 60-2770 as well as cyclosporin A and SB-216763, which prevented mPTP opening and inhibited glycogen synthase kinase-3β (GSK-3β), respectively. Western blots of WT and HO-1(-/-) enterocytes indicated that GSK-3β phosphorylation on Ser(9) (inhibitory site) was reduced by half following I/R alone (increased GSK-3β activity) and increased by one-third (reduced GSK-3β activity) following BAY 60-2770. Other investigators have associated phosphorylation of the GSK-3β substrate cyclophilin D (pCyPD) with mPTP formation. We observed a 60% increase in pCyPD after I/R, whereas BAY 60-2770 treatment of sham and I/R groups reduced pCyPD by about 20%. In conclusion, selective activation of oxidized sGC of WT and HO-1(-/-) during ischemia protects against I/R-induced inflammation and preserves mucosal integrity in part by reducing pCyPD production and mPTP formation.[Abstract] [Full Text] [Related] [New Search]