These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nano-level monitoring of Er(III) by fabrication of coated graphite electrode based on newly synthesized Schiff base as neutral carrier. Author: Bandi KR, Upadhyay A, Singh AK, Jain AK. Journal: Mater Sci Eng C Mater Biol Appl; 2016 May; 62():9-17. PubMed ID: 26952392. Abstract: Plasticized membranes using N-(-3-((thiazol-2-ylimino)methyl)benzylidene)thiazol-2-amine (S1) and 5-((-3-((5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl)benzylidene)amino)-1,3,4-thiadiazole-2-thiol (S2) have been prepared and explored as Er (III) selective electrodes. Effect of various plasticizers viz. dibutylphthalate, tri-n-butylphosphate, dioctylphthalate, acetophenone, 1-chloronapthalene, o-nitrophenyloctylether, and anion excluders viz. sodium tetraphenylborate and potassium tetrakis-p-(chlorophenyl)borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane electrode having a composition of S2: PVC: o-NPOE: KTpClPB in the ratio of 4: 38: 55: 3 (w/w, mg). The performance of the PME based on S2 was compared with CGE. The electrodes exhibit Nernstian slope for Er (III) ion with detection limit 5.4 × 10(-8)mol L(-1) for PME and 6.1 × 10(-9)mol L(-1) for CGE. The response time for PME and CGE was found to be 12s and 9s respectively. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of EDTA with Er (III) solution and determination of fluoride ions in mouthwash solution. The proposed electrode was also applied to the determination of added Er(3+) ion in water and binary mixtures. It is found that the electrode could be able to recover the Er(3+) ion in 96.2-99.5%.[Abstract] [Full Text] [Related] [New Search]