These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sequence and characteristics of the Bifidobacterium longum gene encoding L-lactate dehydrogenase and the primary structure of the enzyme: a new feature of the allosteric site.
    Author: Minowa T, Iwata S, Sakai H, Masaki H, Ohta T.
    Journal: Gene; 1989 Dec 21; 85(1):161-8. PubMed ID: 2695396.
    Abstract:
    The gene ldh, encoding L-lactate dehydrogenase (LDH; EC 1.1.1.27) of Bifidobacterium longum aM101-2, was cloned in Escherichia coli using an oligodeoxyribonucleotide hybridization probe. The amino acid (aa) sequence, deduced from the sequence of the cloned DNA, was consistent with the results of protein chemical analysis of B. longum LDH. The transcription start points (tsp) in B. longum were identified by S1 nuclease mapping. A sequence, GTAGCAA-(14 bp)-TTATAGA, which is located a few bp upstream from the tsp, was assigned as the promoter of this ldh gene. In the 3'-noncoding region, there were two structures that strongly resembled the Rho-independent transcriptional termination signal of E. coli. Therefore, the B. longum ldh gene might form a monocistronic unit. The deduced primary structure of B. longum LDH had 40% identity with LDHs from Thermus caldophilus, Bacillus stearothermophilus, Lactobacillus casei and dogfish muscle. Most bacterial LDHs are allosterically regulated by fructose 1,6-bisphosphate (FBP), while the vertebrate LDHs are not. The anion-binding site of vertebrate LDHs has been thought to correspond to the FBP-binding site of bacterial LDHs. Although the B. longum LDH was regulated by FBP, the charge properties of aa residues in the putative FBP-binding site of the LDH were closer to those of the vertebrate LDHs than to those of bacterial LDHs.
    [Abstract] [Full Text] [Related] [New Search]