These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stimuli-responsive poly(N-isopropyl acrylamide)-co-tyrosine@gadolinium: Iron oxide nanoparticle-based nanotheranostic for cancer diagnosis and treatment.
    Author: Roy E, Patra S, Madhuri R, Sharma PK.
    Journal: Colloids Surf B Biointerfaces; 2016 Jun 01; 142():248-258. PubMed ID: 26962761.
    Abstract:
    In this paper, we have prepared a stimuli-responsive polymer modified gadolinium doped iron oxide nanoparticle (poly@Gd-MNPs) as cancer theranostic agent. The responsive polymer is composed of the poly(N-isopropyl acrylamide)-co-tyrosine unit, which shows excellent loading for the anti-cancer drug (methotrexate) and stimuli dependent release (change in pH and temperature). The in vitro experiment revealed that the poly@Gd-MNPs exhibited T1-weighted MRI capability (r1=11.314mM(-1)s(-1)) with good in-vitro hyperthermia response. The prepared poly@Gd-MNPs has generated quick heating (45°C in 2min) upon exposure to an alternating magnetic field and able to travel a distance of 35cm in 1min in the presence of an external magnet. The poly@Gd-MNPs shows 86% of drug loading capacity with 70% drug release in first 2h. The cytotoxic assay (MTT) demonstrated that the nanoparticle did not affect the viability of normal human fibroblast and efficiently kill the MCF7 cancer cells in the presence of an external magnetic field. To explore the uptake of poly@Gd-MNPs in the cells, bright field cell imaging study was also performed. This study provides a valuable approach for the design of highly sensitive polymer modified gadolinium doped iron oxide-based T1 contrast agents for cancer theranostics.
    [Abstract] [Full Text] [Related] [New Search]