These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A computational model for predicting fusion peptide of retroviruses. Author: Wu S, Han J, Liu R, Liu J, Lv H. Journal: Comput Biol Chem; 2016 Apr; 61():245-50. PubMed ID: 26963379. Abstract: As a pivotal domain within envelope protein, fusion peptide (FP) plays a crucial role in pathogenicity and therapeutic intervention. Taken into account the limited FP annotations in NCBI database and absence of FP prediction software, it is urgent and desirable to develop a bioinformatics tool to predict new putative FPs (np-FPs) in retroviruses. In this work, a sequence-based FP model was proposed by combining Hidden Markov Method with similarity comparison. The classification accuracies are 91.97% and 92.31% corresponding to 10-fold and leave-one-out cross-validation. After scanning sequences without FP annotations, this model discovered 53,946 np-FPs. The statistical results on FPs or np-FPs reveal that FP is a conserved and hydrophobic domain. The FP software programmed for windows environment is available at https://sourceforge.net/projects/fptool/files/?source=navbar.[Abstract] [Full Text] [Related] [New Search]