These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanism of sonochemical reduction of permanganate to manganese dioxide in aqueous alcohol solutions: Reactivities of reducing species formed by alcohol sonolysis. Author: Okitsu K, Iwatani M, Okano K, Uddin MH, Nishimura R. Journal: Ultrason Sonochem; 2016 Jul; 31():456-62. PubMed ID: 26964972. Abstract: The sonochemical reduction of MnO4(-) to MnO2 in aqueous solutions was investigated as a function of alcohol concentration under Ar. The rate of MnO4(-) reduction initially decreased with increasing alcohol concentration, and then increased when the alcohol concentration was increased further. The concentrations at which the reduction rates were minimum depended on the hydrophobic properties of the added alcohols under ultrasonic irradiation. At low concentrations, the alcohols acted as OH radical scavengers; at high concentrations, they acted as reductant precursors: Rab, formed by abstraction reactions of the alcohols with sonochemically formed OH radicals or H atoms, and Rpy, formed by alcohol pyrolysis under ultrasonic irradiation. The results suggest that the reactivity order of the sonochemically formed reducing species with MnO4(-) at pH 7-9 is the sum of H2O2 and H>Rpy>Rab. The peak wavelengths of MnO2 colloidal solutions formed at high 1-butanol concentrations shifted to shorter wavelengths, suggesting the formation of small particles at high 1-butanol concentrations. The rates of sonochemical reduction of MnO2 to Mn(2+) in the presence of 1-butanol were slower than that in the absence of 1-butanol, because the sonochemical formation of H2O2 and H, which act as reductants, was suppressed by 1-butanol in aqueous solutions.[Abstract] [Full Text] [Related] [New Search]