These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding.
    Author: Shen B, Li Y, Zhai W, Zheng W.
    Journal: ACS Appl Mater Interfaces; 2016 Mar; 8(12):8050-7. PubMed ID: 26974443.
    Abstract:
    The fabrication of low-density and compressible polymer/graphene composite (PGC) foams for adjustable electromagnetic interference (EMI) shielding remains a daunting challenge. Herein, ultralightweight and compressible PGC foams have been developed by simple solution dip-coating of graphene on commercial polyurethane (PU) sponges with highly porous network structure. The resultant PU/graphene (PUG) foams had a density as low as ∼0.027-0.030 g/cm(3) and possessed good comprehensive EMI shielding performance together with an absorption-dominant mechanism, possibly due to both conductive dissipation and multiple reflections and scattering of EM waves by the inside 3D conductive graphene network. Moreover, by taking advantage of their remarkable compressibility, the shielding performance of the PUG foams could be simply adjusted through a simple mechanical compression, showing promise for adjustable EMI shielding. We believe that the strategy for fabricating PGC foams through a simple dip-coating method could potentially promote the large-scale production of lightweight foam materials for EMI shielding.
    [Abstract] [Full Text] [Related] [New Search]