These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pathophysiology of vasopressin in edematous disorders.
    Author: Schrier RW, Howard RL.
    Journal: Nihon Naibunpi Gakkai Zasshi; 1989 Dec 20; 65(12):1311-27. PubMed ID: 2697604.
    Abstract:
    Sodium and water retention is characteristic of edematous disorders including cardiac failure, cirrhosis, nephrotic syndrome and pregnancy. In recent years the use of a sensitive radioimmunoassay for plasma vasopressin has implicated the role of nonosmotic vasopressin release in the water retention of these edematous disorders. In experimental studies and studies in humans it has been found that the nonosmotic release of vasopressin is consistently associated with activation of the sympathetic nervous and renin-angiotensin-aldosterone systems. Moreover, the sympathetic nervous system has been shown to be involved in the nonosmotic release of vasopressin (carotid and aortic baroreceptors) and activation of the renin-angiotensin system (renal beta-adrenergic receptors). These findings have led to our proposal that body fluid volume regulation involves the dynamic interaction between cardiac output and peripheral arterial resistance. In this context neither total extracellular fluid (ECF) volume nor blood volume are determinants of renal sodium and water excretion. Rather, renal sodium and water retention is initiated by either a fall in cardiac output (e.g. ECF volume depletion, low-output cardiac failure, pericardial tamponade or hypovolemic nephrotic syndrome) or peripheral arterial vasodilation (e.g. high-output cardiac failure, cirrhosis, pregnancy, sepsis, arteriovenous fistulae and pharmacologic vasodilators). With a decrease in effective arterial blood volume (EABV), initiated by either a fall in cardiac output or peripheral arterial vasodilation, the acute response involves vasoconstriction mediated by angiotensin, sympathetic mediators and vasopressin. The slower response to restoring EABV involves vasopressin-mediated water retention and aldosterone-mediated sodium retention. The renal vasoconstriction which accompanies those states that decrease EABV, by either decreasing cardiac output or causing peripheral arterial vasodilation, limits the distal tubular delivery of sodium and water thus maximizing the water-retaining effect of vasopressin and impairing the normal escape from the sodium-retaining effects of aldosterone. The elevated glomerular filtration rate and filtered sodium load in pregnancy allows increased distal sodium and water delivery in spite of a decrease in EABV, thus limiting edema formation during gestation.
    [Abstract] [Full Text] [Related] [New Search]