These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [The placental barrier: structure, resistance, asymmetry]. Author: Challier JC. Journal: Reprod Nutr Dev; 1989; 29(6):703-16. PubMed ID: 2698168. Abstract: The concept of placental barrier has been evaluated using recent advances in ultrastructure and in transport physiology. On a structural basis, the barrier effect is grounded by the syncytiotrophoblast continuity, and by basal and plasma membrane's electrical charges and by basement membrane porosity. The aqueous phase continuity for diffusion operates through intercellular gap, fenestrations (rat, rabbit) and transcellular channels (guinea pig). However, these connections are not apparent in the human syncytiotrophobast. For the molecular size selectivity, the hemochorial placentas with a pore radius of 10 nm appear much less selective than the epitheliochorial ones. The metabolic capacity of the placental cells (trophoblast, macrophages) participates to the barrier effect by metabolizing or by converting some substrates. Similarly, trophoblast asymmetry in the location of enzymes, carriers and receptors on outer (maternal side) and on basal (fetal side) plasma membranes, and in the release of secretory products, contributes to maintain separate fetal and maternal compartments. The functional polarity of trophoblast is expressed in metabolism (corticostéroids), nutrients (amino acids) and ions (iron) transport, and most of its secretions (hPL, hCG, SP1).[Abstract] [Full Text] [Related] [New Search]