These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 16S-gyrB-rpoB multilocus sequence analysis for species identification in the genus Microbispora.
    Author: Savi DC, Aluizio R, Galli-Terasawa L, Kava V, Glienke C.
    Journal: Antonie Van Leeuwenhoek; 2016 Jun; 109(6):801-15. PubMed ID: 26984252.
    Abstract:
    The genus Microbispora has been considered difficult to define taxonomically. While 16S rRNA gene analysis is required to determine phylogenetic relationships among species in this genus, most 16S rRNA gene-based phylogenetic tree topologies are not reliable. The genus Microbispora currently contains eight species along with six reclassified species (Microbispora chromogenes, Microbispora diastatica, Microbispora parva, Microbispora indica, Microbispora karnatakensis, Microbispora rosea) and Microbispora rosea subsp. aerata, a taxon composed of three further reclassified species (Microbispora aerata, Microbispora thermodiastatica, and Microbispora thermorosea). 16S rRNA, 23S rRNA, gyrB, and rpoB gene sequences were obtained for the type strains of Microbispora species, and eleven endophytic isolates from a Brazilian medicinal plant, Vochysia divergens. Using the concatenated sequence, most Microbispora type strains could be distinguished with high probability support. Based on these analyses, we propose that five of the species reclassified within the subspecies of M. rosea (M. chromogenes, M. karnatakensis, M. parva, M. aerata and M. thermorosea) are distinct from M. rosea and so should be retained as distinct species. The concatenated 16S-gyrB-rpoB gene phylogenic tree had significant probability support and topology. We propose the use of concatenated 16S-gyrB-rpoB gene sequences to determine phylogenetic relationships within the genus Microbispora. We also suggest that strains sharing >98.1 % 16S-gyrB-rpoB gene sequences similarity be defined as a single species, based on results from this analysis. Seven of the strains isolated from V. divergens were not related to any previously described Microbispora species.
    [Abstract] [Full Text] [Related] [New Search]