These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prediction of atherosclerotic disease progression using LDL transport modelling: a serial computed tomographic coronary angiographic study. Author: Sakellarios A, Bourantas CV, Papadopoulou SL, Tsirka Z, de Vries T, Kitslaar PH, Girasis C, Naka KK, Fotiadis DI, Veldhof S, Stone GW, Reiber JH, Michalis LK, Serruys PW, de Feyter PJ, Garcia-Garcia HM. Journal: Eur Heart J Cardiovasc Imaging; 2017 Jan; 18(1):11-18. PubMed ID: 26985077. Abstract: AIM: To investigate the efficacy of low-density lipoprotein (LDL) transport simulation in reconstructed arteries derived from computed tomography coronary angiography (CTCA) to predict coronary segments that are prone to progress. METHODS AND RESULTS: Thirty-two patients admitted with an acute coronary event who underwent 64-slice CTCA after percutaneous coronary intervention and at 3-year follow-up were included in the analysis. The CTCA data were used to reconstruct the coronary anatomy of the untreated vessels at baseline and follow-up, and LDL transport simulation was performed in the baseline models. The computed endothelial shear stress (ESS), LDL concentration, and CTCA-derived plaque characteristics were used to identify predictors of substantial disease progression (defined as an increase in the plaque burden at follow-up higher than two standard deviations of the intra-observer variability of the expert who performed the analysis). Fifty-eight vessels were analysed. High LDL concentration [odds ratio (OR): 2.16; 95% confidence interval (CI): 1.64-2.84; P = 0.0054], plaque burden (OR: 1.40; 95% CI: 1.13-1.72; P = 0.0017), and plaque area (OR: 3.46; 95% CI: 2.20-5.44; P≤ 0.0001) were independent predictors of a substantial disease progression at follow-up. The ESS appears as a predictor of disease progression in univariate analysis but was not an independent predictor when the LDL concentration was entered into the multivariate model. The accuracy of the model that included the LDL concentration was higher than the accuracy of the model that included the ESS (65.1 vs. 62.5%). CONCLUSIONS: LDL transport modelling appears a better predictor of atherosclerotic disease progression than the ESS, and combined with the atheroma characteristics provided by CTCA is able to detect with a moderate accuracy segments that will exhibit a significant plaque burden increase at mid-term follow-up.[Abstract] [Full Text] [Related] [New Search]