These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Defining the wheat gluten peptide fingerprint via a discovery and targeted proteomics approach.
    Author: Martínez-Esteso MJ, Nørgaard J, Brohée M, Haraszi R, Maquet A, O'Connor G.
    Journal: J Proteomics; 2016 Sep 16; 147():156-168. PubMed ID: 26994601.
    Abstract:
    UNLABELLED: Accurate, reliable and sensitive detection methods for gluten are required to support current EU regulations. The enforcement of legislative levels requires that measurement results are comparable over time and between methods. This is not a trivial task for gluten which comprises a large number of protein targets. This paper describes a strategy for defining a set of specific analytical targets for wheat gluten. A comprehensive proteomic approach was applied by fractionating wheat gluten using RP-HPLC (reversed phase high performance liquid chromatography) followed by a multi-enzymatic digestion (LysC, trypsin and chymotrypsin) with subsequent mass spectrometric analysis. This approach identified 434 peptide sequences from gluten. Peptides were grouped based on two criteria: unique to a single gluten protein sequence; contained known immunogenic and toxic sequences in the context of coeliac disease. An LC-MS/MS method based on selected reaction monitoring (SRM) was developed on a triple quadrupole mass spectrometer for the specific detection of the target peptides. The SRM based screening approach was applied to gluten containing cereals (wheat, rye, barley and oats) and non-gluten containing flours (corn, soy and rice). A unique set of wheat gluten marker peptides were identified and are proposed as wheat specific markers. SIGNIFICANCE: The measurement of gluten in processed food products in support of regulatory limits is performed routinely. Mass spectrometry is emerging as a viable alternative to ELISA based methods. Here we outline a set of peptide markers that are representative of gluten and consider the end user's needs in protecting those with coeliac disease. The approach taken has been applied to wheat but can be easily extended to include other species potentially enabling the MS quantification of different gluten containing species from the identified markers.
    [Abstract] [Full Text] [Related] [New Search]