These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Broadband noise exposure does not affect hearing sensitivity in big brown bats (Eptesicus fuscus). Author: Simmons AM, Hom KN, Warnecke M, Simmons JA. Journal: J Exp Biol; 2016 Apr; 219(Pt 7):1031-40. PubMed ID: 27030779. Abstract: In many vertebrates, exposure to intense sounds under certain stimulus conditions can induce temporary threshold shifts that reduce hearing sensitivity. Susceptibility to these hearing losses may reflect the relatively quiet environments in which most of these species have evolved. Echolocating big brown bats (Eptesicus fuscus) live in extremely intense acoustic environments in which they navigate and forage successfully, both alone and in company with other bats. We hypothesized that bats may have evolved a mechanism to minimize noise-induced hearing losses that otherwise could impair natural echolocation behaviors. The hearing sensitivity of seven big brown bats was measured in active echolocation and passive hearing tasks, before and after exposure to broadband noise spanning their audiometric range (10-100 kHz, 116 dB SPL re. 20 µPa rms, 1 h duration; sound exposure level 152 dB). Detection thresholds measured 20 min, 2 h or 24 h after exposure did not vary significantly from pre-exposure thresholds or from thresholds in control (sham exposure) conditions. These results suggest that big brown bats may be less susceptible to temporary threshold shifts than are other terrestrial mammals after exposure to similarly intense broadband sounds. These experiments provide fertile ground for future research on possible mechanisms employed by echolocating bats to minimize hearing losses while orienting effectively in noisy biological soundscapes.[Abstract] [Full Text] [Related] [New Search]