These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Secondary task performance during challenging walking tasks and freezing episodes in Parkinson's disease.
    Author: Dibilio V, Stummer C, Drenthen L, Bloem BR, Nonnekes J, Weerdesteyn V.
    Journal: J Neural Transm (Vienna); 2016 May; 123(5):495-501. PubMed ID: 27032775.
    Abstract:
    Parkinson's disease (PD) patients likely use attentional strategies to compensate for their gait deficits, which increases the cognitive challenge of walking. The interplay between cognitive functions and gait can be investigated by evaluating the subject's attendance to a secondary task during walking. We hypothesized that the ability to attend to a secondary task decreases during challenging walking conditions in PD, particularly during freezing of gait (FOG)-episodes. Twenty-nine PD patients and 14 age-matched controls performed a simple reaction task that involved squeezing a ball as fast as possible in response to an auditory stimulus. Participants performed this reaction task during four conditions: (1) walking at preferred speed; (2) walking with short steps at preferred speed; (3) walking with short steps, as rapidly as possible; (4) making rapid full turns. We used surface electromyography to determine reaction times, and a pressure sensor located within the ball to determine movement onset. Reaction times of PD patients were slower (on average by 42 ms) compared to controls, regardless of the walking task. In both groups, reaction times were significantly longer during the turning condition compared to all other conditions. FOG-episodes were most often seen during the turning condition. In PD patients, reaction times were significantly longer during FOG-episodes compared to trials without FOG. Our results suggest that turning requires more attentional resources than other walking tasks. The observation of delayed reaction times during FOG-episodes compared to trials without FOG suggests that freezers use additional resources to overcome their FOG-episodes.
    [Abstract] [Full Text] [Related] [New Search]