These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quercetin-3-O-rhamnoside from Euphorbia hirta protects against snake Venom induced toxicity. Author: Gopi K, Anbarasu K, Renu K, Jayanthi S, Vishwanath BS, Jayaraman G. Journal: Biochim Biophys Acta; 2016 Jul; 1860(7):1528-40. PubMed ID: 27033089. Abstract: BACKGROUND: The plant Euphorbia hirta is widely used against snake envenomations in rural areas and it was proved to be effective in animal models. Therefore, the scientific validation of its phytoconstituents for their antiophidian activity is aimed in the present study. METHODS: E. hirta extract was subjected to bioactivity guided fractionation and the fractions that inhibited different enzyme activities of Naja naja venom in vitro was structurally characterized using UV, FT-IR, LC-MS and NMR spectroscopy. Edema, hemorrhage and lethality inhibition activity of the compound were studied in mice model. In addition, molecular docking and molecular dynamic simulations were also performed in silico. RESULTS: The bioactive fraction was identified as Quercetin-3-O-α-rhamnoside (QR, 448.38 Da). In vitro experiments indicated that protease, phospholipase-A(2), hemolytic activity and hemorrhage inducing activity of the venom were inhibited completely at a ratio of 1:20 (venom: QR) w/w. At the same concentration, the edema ratio was drastically reduced from 187% to 107%. Significant inhibition (93%) of hyaluronidase activity was also observed at a slightly higher concentration of QR (1:50). Further, in in vivo analysis, QR significantly prolonged the survival time of mice injected with snake venom. CONCLUSION: For the first time Quercetin-3-O-α-rhamnoside, isolated from E. hirta, has been shown to exhibit anti-snake venom activity against Naja naja venom induced toxicity. GENERAL SIGNIFICANCE: Exploring such multifunctional lead molecules with anti-venom activity would help in developing complementary medicine for snakebite treatments especially in rural areas where anti-snake venom is not readily available.[Abstract] [Full Text] [Related] [New Search]