These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Osmotherapy With Hypertonic Saline Attenuates Global Cerebral Edema Following Experimental Cardiac Arrest via Perivascular Pool of Aquaporin-4.
    Author: Nakayama S, Migliati E, Amiry-Moghaddam M, Ottersen OP, Bhardwaj A.
    Journal: Crit Care Med; 2016 Aug; 44(8):e702-10. PubMed ID: 27035238.
    Abstract:
    OBJECTIVES: We tested the hypothesis that osmotherapy with hypertonic saline attenuates cerebral edema following experimental cardiac arrest and cardiopulmonary resuscitation by exerting its effect via the perivascular pool of aquaporin-4. We used mice with targeted disruption of the gene encoding α-syntrophin (α-Syn) that demonstrate diminished perivascular aquaporin-4 pool but retain the non-endfoot and ependymal pools. DESIGN: Laboratory animal study. SETTING: University animal research laboratory. INTERVENTIONS: Isoflurane-anesthetized adult male wild-type C57B/6 or α-Syn mice were subjected to cardiac arrest/cardiopulmonary resuscitation and treated with either a continuous IV infusion of 0.9% saline or various concentrations of hypertonic saline. Serum osmolality, regional brain water content, blood-brain barrier disruption, and aquaporin-4 protein expression were determined at 24 hours after cardiac arrest/cardiopulmonary resuscitation. MEASUREMENTS AND MAIN RESULTS: Hypertonic saline (7.5%) treatment significantly attenuated water content in the caudoputamen complex and cortex compared with 0.9% saline treatment in wild-type mice subjected to cardiac arrest/cardiopulmonary resuscitation. In contrast, in α-Syn mice subjected to cardiac arrest/cardiopulmonary resuscitation, 7.5% hypertonic saline treatment did not attenuate water content. Treatment with 7.5% hypertonic saline attenuated blood-brain barrier disruption at 24 hours following cardiac arrest/cardiopulmonary resuscitation in wild-type mice but not in α-Syn mice. Total aquaporin-4 protein expression was not different between 0.9% saline and hypertonic saline-treated wild-type mice. CONCLUSIONS: Following experimental cardiac arrest/cardiopulmonary resuscitation: 1) continuous hypertonic saline therapy maintained to achieve serum osmolality of ≈ 350 mOsm/L is beneficial for the treatment of cerebral edema; 2) perivascular pool of aquaporin-4 plays a critical role in water egress from brain; and 3) hypertonic saline attenuates blood-brain barrier disruption via perivascular aquaporin-4 pool.
    [Abstract] [Full Text] [Related] [New Search]