These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Autophagy inhibition facilitates erlotinib cytotoxicity in lung cancer cells through modulation of endoplasmic reticulum stress.
    Author: Wang Z, Du T, Dong X, Li Z, Wu G, Zhang R.
    Journal: Int J Oncol; 2016 Jun; 48(6):2558-66. PubMed ID: 27035631.
    Abstract:
    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have revolutionized the treatment for non-small cell lung cancer patients, but acquired resistance limit the efficiency of this treatment. As a homeostatic cellular recycling mechanism, autophagy has been proposed to participate in the EGFR-TKI resistance. However, the role of autophagy in lung cancer treatment and the underlying mechanisms have not been clarified. In this study, we found the sensitivity to erlotinib, a well-used EGFR-TKI, was correlated with basal autophagy level. Erlotinib was able to induce autophagy not only in TKI-sensitive, but also TKI-resistant cancer cells. Inhibition of autophagy significantly enhanced cytotoxicity of erlotinib in TKI-resistant cancer cells via modulation of endoplasmic reticulum (ER) stress induced apoptosis. In this process, CCAAT/enhancer binding protein homologous protein (CHOP) acted as an executioner. Downregulation of CHOP with siRNA blocked the autophagy inhibition and erlotinib co-treatment induced apoptosis and prevented cancer cells from this co-treatment-induced cell death. Our findings suggest that autophagy inhibition overcomes erlotinib resistance through modulation of ER stress mediated apoptosis.
    [Abstract] [Full Text] [Related] [New Search]