These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of mTOR and Regulation by AMPK in Early Iodine Deficiency-Induced Thyroid Microvascular Activation. Author: Craps J, Joris V, De Jongh B, Sonveaux P, Horman S, Lengelé B, Bertrand L, Many MC, Colin IM, Gérard AC. Journal: Endocrinology; 2016 Jun; 157(6):2545-59. PubMed ID: 27035650. Abstract: Iodine deficiency (ID) induces TSH-independent microvascular activation in the thyroid via the reactive oxygen species/nitric oxide-hypoxia-inducible factor-1α/vascular endothelial growth factor (VEGF) pathway. We hypothesized the additional involvement of mammalian target of rapamycin (mTOR) as a positive regulator of this pathway and AMP-activated protein kinase (AMPK) as a negative feedback regulator to explain the transient nature of ID-induced microvascular changes under nonmalignant conditions. mTOR and AMPK involvement was investigated using an in vitro model (human thyrocytes in primary cultures) and 2 murine models of goitrogenesis (normal NMRI and RET-PTC mice [a papillary thyroid cancer model]). In NMRI mice, ID had no effect on the phosphorylation of ribosomal S6 kinase (p70S6K), a downstream target of mTOR. However, rapamycin inhibited ID-induced thyroid blood flow and VEGF protein expression. In the RET-PTC model, ID strongly increased the phosphorylation of p70S6K, whereas rapamycin completely inhibited the ID-induced increase in p70S6K phosphorylation, thyroid blood flow, and VEGF-A expression. In vitro, although ID increased p70S6K phosphorylation, the ID-stimulated hypoxia-inducible factor/VEGF pathway was inhibited by rapamycin. Activation of AMPK by metformin inhibited ID effects both in vivo and in vitro. In AMPK-α1 knockout mice, the ID-induced increase in thyroid blood flow and VEGF-A protein expression persisted throughout the treatment, whereas both parameters returned to control values in wild-type mice after 4 days of ID. In conclusion, mTOR is required for early ID-induced thyroid microvascular activation. AMPK negatively regulates this pathway, which may account for the transient nature of ID-induced TSH-independent vascular effects under benign conditions.[Abstract] [Full Text] [Related] [New Search]