These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Localization of active, dually phosphorylated extracellular signal-regulated kinase 1 and 2 in colorectal cancer with or without activating BRAF and KRAS mutations. Author: Holck S, Bonde J, Pedersen H, Petersen AA, Chaube A, Nielsen HJ, Larsson LI. Journal: Hum Pathol; 2016 Aug; 54():37-46. PubMed ID: 27036313. Abstract: Colorectal cancers (CRC) often show activating mutations of the KRAS or BRAF genes, which stimulate the extracellular signal-regulated kinase (ERK) pathway, thus increasing cell proliferation and inhibiting apoptosis. However, immunohistochemical results on ERK activation in such tumors differ greatly. Recently, using a highly optimized immunohistochemical method, we obtained evidence that high levels of ERK activation in rectal adenocarcinomas were associated with resistance to radiochemotherapy. In order to determine whether KRAS and/or BRAF mutations correlate to immunohistochemically detectable increases in phosphorylation of ERK (pERK), we stained biopsies from 36 CRC patients with activating mutations in the BRAF gene (BRAFV600E: BRAF(m)), the KRAS gene (KRAS(m)) or in neither (BRAF/KRAS(n)) with this optimized method. Staining was scored in blind-coded specimens by two observers. Staining of stromal cells was used as a positive control. BRAF(m) or KRAS(m) tumors did not show higher staining scores than BRAF/KRAS(n) tumors. Although BRAFV600E staining occurred in over 90% of cancer cells in all 9 BRAF(m) tumors, 3 only showed staining for pERK in less than 10% of cancer cell nuclei. The same applied to 4 of the 14 KRAS(m) tumors. A phophorylation-insensitive antibody demonstrated that lack of pERK staining did not reflect defect expression of ERK1/2 protein. Thus, increased staining for pERK does not correlate to BRAF or KRAS mutations even with a highly optimized procedure. Further studies are required to determine whether this reflects differences in expression of counterregulatory molecules, including ERK phosphatases.[Abstract] [Full Text] [Related] [New Search]