These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A flexible nanofiber-based membrane with superhydrophobic pinning properties.
    Author: Hu L, Zhang S, Zhang Y, Li B.
    Journal: J Colloid Interface Sci; 2016 Jun 15; 472():167-72. PubMed ID: 27038279.
    Abstract:
    A nanofiber-based TiO2(B)/carbon nanofiber membrane has been synthesized by a facile and effective route that incorporates electrospinning approach with hydrothermal method. The prepared membrane shows high flexibility and hydrophilicity. After treatment with a low surface energy fluorosilane, the obtained superhydrophobic surface endows the membrane a high adhesive force due to the hybrid microstructure of TiO2(B) nanotubes and nanoplates on fibers. A water droplet on the surface of the membrane appears spherical in shape, which cannot roll off even when the membrane is bent and turned upside down. When a water droplet dropped from a certain height above the tilt membrane, the rolled water droplet can be stopped after a small displacement. In addition, a 12 μl water droplet can be quickly captured from a hydrophobic surface by curvature change of the superhydrophobic TiO2(B)/carbon nanofiber membrane. The membrane with excellent static and dynamic pinning performance to water may be expected to apply to biomedical and microfluidic devices.
    [Abstract] [Full Text] [Related] [New Search]