These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of the phenol compound ellagic acid on Ca(2+) homeostasis and cytotoxicity in liver cells.
    Author: Liang WZ, Chou CT, Cheng JS, Wang JL, Chang HT, Chen IS, Lu T, Yeh JH, Kuo DH, Shieh P, Chen FA, Kuo CC, Jan CR.
    Journal: Eur J Pharmacol; 2016 Jun 05; 780():243-51. PubMed ID: 27038520.
    Abstract:
    Ellagic acid, a natural phenol compound found in numerous fruits and vegetables, causes various physiological effects in different cell models. However, the effect of this compound on Ca(2+) homeostasis in liver cells is unknown. This study examined the effect of ellagic acid on intracellular Ca(2+) concentration ([Ca(2+)]i) and established the relationship between Ca(2+) signaling and cytotoxicity in liver cells. The data show that ellagic acid induced concentration-dependent [Ca(2+)]i rises in HepG2 human hepatoma cells, but not in HA22T, HA59T human hepatoma cells or AML12 mouse hepatocytes. In HepG2 cells, this Ca(2+) signal response was reduced by removing extracellular Ca(2+) and was inhibited by store-operated Ca(2+) channel blockers (2-APB, econazole or SKF96365) and the protein kinase C (PKC) inhibitor GF109203X. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished ellagic acid-induced [Ca(2+)]i rises. Conversely, incubation with ellagic acid abolished thapsigargin-induced [Ca(2+)]i rises. Inhibition of phospholipase C (PLC) with U73122 also abolished ellagic acid-induced [Ca(2+)]i rises. Ellagic acid (25-100μM) concentration-dependently caused cytotoxicity in HepG2, HA22T or HA59T cells, but not in AML12 cells. Furthermore, this cytotoxic effect was partially prevented by prechelating cytosolic Ca(2+) with BAPTA-AM only in HepG2 cells. Together, in HepG2 cells, ellagic acid induced [Ca(2+)]i rises by inducing PLC-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via PKC-sensitive store-operated Ca(2+) channels. Moreover, ellagic acid induced Ca(2+)-associated cytotoxicity.
    [Abstract] [Full Text] [Related] [New Search]