These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of miR-26a-5p on the Wnt/Ca(2+) Pathway and Osteogenic Differentiation of Mouse Adipose-Derived Mesenchymal Stem Cells.
    Author: Li S, Hu C, Li J, Liu L, Jing W, Tang W, Tian W, Long J.
    Journal: Calcif Tissue Int; 2016 Aug; 99(2):174-86. PubMed ID: 27040676.
    Abstract:
    Elucidation of the molecular mechanisms that regulate the differentiation of adipose-derived mesenchymal stem cells into osteogenic cells may lead to new methods for bone tissue engineering. We examined the role of miR-26a-5p in the regulation of osteogenic differentiation of mouse adipose-derived mesenchymal stem cells (mADSCs) by using mimics and inhibitors of this microRNA. Our results showed that over-expression of miR-26a-5p inhibited osteogenesis and that suppression of endogenous miR-26a-5p promoted osteogenesis. Four bioinformatics algorithms indicated that the 3'UTR of Wnt5a was a potential target of miR-26a-5p. We confirmed this prediction by use of dual-luciferase reporter assay and GFP/RFP assay. We also examined the molecular mechanisms by which miR-26a-5p regulates osteogenesis. Fura-2AM and Western blot assays after transfection indicated that miR-26a-5p repressed WNT5A, inhibited calcium flux and protein kinase C, and suppressed osteogenic differentiation of mADSCs. By contrast, miR-26a-5p inhibition activated these signal proteins and promoted osteogenic differentiation. Taken together, our results suggest that up-regulation of miR-26a-5p inhibits osteogenic differentiation of mADSCs by directly targeting the 3'UTR of Wnt5a, thereby down-regulating the Wnt/Ca(2+) signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]