These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transport of Three Antimicrobials in Runoff from Windrows of Composting Beef Cattle Manure.
    Author: Sura S, Degenhardt D, Cessna AJ, Larney FJ, Olson AF, McAllister TA.
    Journal: J Environ Qual; 2016 Mar; 45(2):494-502. PubMed ID: 27065396.
    Abstract:
    Rain runoff from windrowed or stockpiled manure may contain antimicrobials with the potential to contaminate surface and ground water. To quantify the concentration of antimicrobials transported in runoff from windrowed manure, antimicrobials were administered continuously in feed to beef cattle () as follows: 44 mg of chlortetracycline kg feed (dry weight), a 1:1 mixture of 44 mg of chlortetracycline and 44 mg sulfamethazine kg feed, and 11 mg of tylosin kg feed. Cattle in a fourth treatment group received no antimicrobials (control). Manure from the cattle was used to construct two windrows per treatment. On Days 2 and 21 of composting, a portable Guelph Rainfall Simulator II was used to apply deionized water at an intensity of 127 mm h to each windrow, and the runoff was collected. Manure samples were collected before rain simulations on Days 2 and 21 of composting for antimicrobial analysis. On Day 2, average concentrations of chlortetracycline, sulfamethazine, and tylosin in manure were 2580, 450, and 120 μg kg, respectively, with maximum concentrations in runoff of 2740, 3600, and 4930 μg L, respectively. Concentrations of all three antimicrobials in runoff were higher ( < 0.05) on Day 2 than on Day 21, reflecting the higher concentrations in manure on Day 2. Maximum estimated masses of chlortetracycline, sulfamethazine, and tylosin that could be transported in runoff from a windrow (3 m long, 2.5 m wide, 1.5 m high) were approximately 0.87 to 0.94, 1.57, and 1.23 g, respectively. This study demonstrates the importance of windrow composting in reducing antimicrobial concentrations in manure. The runoff from windrows can be a source of antimicrobials and demonstrates the need for containment of runoff from composting facilities to mitigate antimicrobial contamination of surface and groundwater resources.
    [Abstract] [Full Text] [Related] [New Search]