These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Viscoelastic and elastomeric active matter: Linear instability and nonlinear dynamics. Author: Hemingway EJ, Cates ME, Fielding SM. Journal: Phys Rev E; 2016 Mar; 93(3):032702. PubMed ID: 27078422. Abstract: We consider a continuum model of active viscoelastic matter, whereby an active nematic liquid crystal is coupled to a minimal model of polymer dynamics with a viscoelastic relaxation time τ(C). To explore the resulting interplay between active and polymeric dynamics, we first generalize a linear stability analysis (from earlier studies without polymer) to derive criteria for the onset of spontaneous heterogeneous flows (strain rate) and/or deformations (strain). We find two modes of instability. The first is a viscous mode, associated with strain rate perturbations. It dominates for relatively small values of τ(C) and is a simple generalization of the instability known previously without polymer. The second is an elastomeric mode, associated with strain perturbations, which dominates at large τ(C) and persists even as τ(C)→∞. We explore the dynamical states to which these instabilities lead by means of direct numerical simulations. These reveal oscillatory shear-banded states in one dimension and activity-driven turbulence in two dimensions even in the elastomeric limit τ(C)→∞. Adding polymer can also have calming effects, increasing the net throughput of spontaneous flow along a channel in a type of drag reduction. The effect of including strong antagonistic coupling between the nematic and polymer is examined numerically, revealing a rich array of spontaneously flowing states.[Abstract] [Full Text] [Related] [New Search]