These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nonlocal Polarization Feedback in a Fractional Quantum Hall Ferromagnet. Author: Hennel S, Braem BA, Baer S, Tiemann L, Sohi P, Wehrli D, Hofmann A, Reichl C, Wegscheider W, Rössler C, Ihn T, Ensslin K, Rudner MS, Rosenow B. Journal: Phys Rev Lett; 2016 Apr 01; 116(13):136804. PubMed ID: 27081998. Abstract: In a quantum Hall ferromagnet, the spin polarization of the two-dimensional electron system can be dynamically transferred to nuclear spins in its vicinity through the hyperfine interaction. The resulting nuclear field typically acts back locally, modifying the local electronic Zeeman energy. Here we report a nonlocal effect arising from the interplay between nuclear polarization and the spatial structure of electronic domains in a ν=2/3 fractional quantum Hall state. In our experiments, we use a quantum point contact to locally control and probe the domain structure of different spin configurations emerging at the spin phase transition. Feedback between nuclear and electronic degrees of freedom gives rise to memristive behavior, where electronic transport through the quantum point contact depends on the history of current flow. We propose a model for this effect which suggests a novel route to studying edge states in fractional quantum Hall systems and may account for so-far unexplained oscillatory electronic-transport features observed in previous studies.[Abstract] [Full Text] [Related] [New Search]