These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Re: Woolsey TA, van der Loos H. 1970. The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex. Brain Res. 17: 205-242.
    Author: Woolsey TA.
    Journal: Brain Res; 2016 Aug 15; 1645():22-4. PubMed ID: 27086973.
    Abstract:
    UNLABELLED: Axoplasmically transported proteins synthesized in neuronal somata labeled by radioactively labeled amino acids (tritium), following local targeted injections for tracing of pathways in the central nervous system using autoradiography. Results from a number of neuronal systems, including: the rat olfactory bulb; cortico-thalamic projections in the mouse; commissural connections of the rat hippocampus; and retinal projections in the monkey and chick are documented. Pathway origins are clear, as the number and distribution of the labeled cells and the normal structure of the injection site is preserved. Light and electron microscopic autoradiography shows that proteins are transported, at two rates: rapid transport (>100mm/day) of fewer proteins accumulating in axon terminals; and, slow transport (1-5mm/day) of the bulk of labeled proteins distributed along the length of axons. Different survival times can be selected to evaluate terminal projection field(s) or pathways from origin to termination. The clarity of autoradiographic labeling of pathways and their terminations is comparable to other techniques (such as the Nauta-Gygax and the Fink-Heimer methods and the electron microscopy of terminal degeneration). Labeled amino acids do not label molecules in fibers of passage and there is no retrograde transport of labeled material from the axon terminals. The functional polarity of fiber pathways can be easily established. We summarize the merits of this technique is based upon an established physiological properties of neurons that are summarized in contrast to currently used techniques dependent upon pathological changes in neurons, axons, or axonal terminals. ABSTRACT: The cytoarchitecture of layer IV in mouse SmI cerebral cortex was examined in.formalin-fixed, Nissl-stained and Cox-fixed, Golgi-Nissl-stained sections cut coronally and tangentially to the pia, A multicellular cytoarchitectonic unit is described in layer IV, roughly cylindrical, 100-400um in diameter, and perpendicular to the pia. Because of their characteristic shape we call these structures barrels. Each barrel is a ring of neurons, the side, which surrounds a less cellular hollow. The nearly acellular reigion surrounding each barrel and separating adjacent barrels is the septum. Barrels are discussed in relation to observations reported in several earlier papers on the mouse cortex. The barrel field (all barrels) has remarkable constancy by all measures: from one hemisphere to the next and from one specimen to the next. A consistent part of the barrel field is the postero-medial barrel subield (PMBSF). Barrels in the PMBSF are larger, elliptical in shape, organized into five distinct rows and their numbers are constant. It is postulated that each barrel in the PMBSF is the cortical correlate of a contralateral mystacial vibrissa (whisker). On the basis of counts of barrels and of all facial sinus hairs a 'one barrel-one vibrissa' hypothesis is proposed. The general hypothesis is that barrels are the morphological manifestation in layer IV of the functional cortical columns discovered by physiologists. The barrels offer excellent opportunities for integrated studies of sensory cerebral cortex at a degree of resolution previously not possible. This article is part of a Special Issue entitled SI:50th Anniversary Issue.
    [Abstract] [Full Text] [Related] [New Search]