These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification. Author: Liu S, Wei W, Sun X, Wang L. Journal: Biosens Bioelectron; 2016 Sep 15; 83():33-8. PubMed ID: 27093488. Abstract: In this article, a simple, highly sensitive and selective electrochemical DNAzyme sensor for Pb(2+) was developed on the basis of a 8-17 DNAzyme cleavage-induced template-independent polymerization and alkaline phosphatase amplification strategy. The hairpin-like substrate strand (HP DNA) of 8-17 DNAzyme was firstly immobilized onto the electrode. In the presence of Pb(2+) and the catalytic strand of 8-17 DNAzyme, the HP DNA could be cleaved to expose the free 3'-OH terminal, which could be then utilized for the cascade operation by terminal deoxynucleotidyl transferase (TdTase) for the base extension to incorporate biotinylated dUTP (dUTP-biotin). The further conjugated streptavidin-labeled alkaline phosphatase (SA-ALP) then catalyzed conversion of electrochemically inactive 1-naphthyl phosphate (1-NP) for the generation of electrochemical response signal. The currently fabricated Pb(2+) sensor effectively combines triply cascade amplification effects including cyclic Pb(2+)-dependent DNAzyme cleavage, TdTase-mediated base extension and enzymatic catalysis of ALP. An impressive detection limit of 0.043nM toward Pb(2+) with an excellent selectivity could be ultimately obtained, which was superior than most of the electrochemical methods. Thus, the developed amplification strategy opens a promising avenue for the detection of metal ions and may extend for the detection of other nucleic acid-related analytes.[Abstract] [Full Text] [Related] [New Search]