These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Flow and compaction properties of hypromellose: new directly compressible versus the established grades.
    Author: Grdešič P, Vrečer F, Ilić I.
    Journal: Drug Dev Ind Pharm; 2016 Nov; 42(11):1877-86. PubMed ID: 27094181.
    Abstract:
    CONTEXT: Information about flow and compaction properties of hypromellose (HPMC) polymers is essential for the technologists who are facing challenges regarding poor flow and compaction while developing new controlled release matrix tablets. There is a profound lack of studies in this field and none of the published ones deal with the compaction of the newly introduced HPMC grades specifically designed for direct compression (DC). OBJECTIVE: The objective behind this study was the evaluation of flow and compaction properties of six different grades of HPMC substitution type 2208 polymers, including two second generation directly compressible grades from Dow Chemical Company (K100LV, K15M, K4M CR, K4M DC, K100M CR and K100M DC). METHODS: Flow properties were determined using flow time and Carr index. Compaction properties were quantified using "out-of-die" Heckel and modified Walker models as well as tensile strength profile and elastic recovery. We used statistical approach to analyze the results. RESULTS AND CONCLUSION: Due to larger, rounder and smoother particles both DC grades showed distinctly better flow properties compared to their non-DC counterparts. Overall, K15M showed the best compaction properties, closely followed by K100LV. K100M grades showed superior compaction properties over K4M grades. The new, second generation DC grades had poorer compaction properties, however, they exhibited better flow properties on the other hand. Considering all compaction results, the Heckel model gave better description of compressibility compared to the Walker model, so it may be preferred in case of studying HPMC polymers and other similar materials.
    [Abstract] [Full Text] [Related] [New Search]