These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Combined promoting effects of low-Pd-containing and Cu-doped LaCoO3 perovskite supported on cordierite for the catalytic combustion of benzene.
    Author: Chen YW, Li B, Niu Q, Li L, Kan JW, Zhu SM, Shen SB.
    Journal: Environ Sci Pollut Res Int; 2016 Aug; 23(15):15193-201. PubMed ID: 27094280.
    Abstract:
    The catalytic activities for benzene oxidation and resistance to SO2 poisoning were tested for a series of Pd/La-Cu-Co-O/cordierite catalysts, which were prepared using a multiple-step impregnation method. The XRD, SEM, and IR characterization techniques were performed to investigate the relationship between the catalytic performance and its physicochemical properties. When Pd/La-Cu-Co-O/cordierite catalysts with Pd loadings of 0.06 and 0.08 % were prepared at a calcination temperature of 500 °C for 5 h, they exhibited similar catalytic activity and sulfur resistance. When the concentration of benzene was 1500 ppm and the GHSV was 20000 h(-1), the benzene conversion was above 95 % at a reaction temperature of 350 °C in SO2 existing at 100 ppm. These results were mainly attributed to the cooperation between La-Cu-Co-O perovskite and the noble metal Pd. Specifically, the addition of copper can strengthen the catalytic activity of La-Co-O/cordierite catalysts by decreasing the crystalline size of the active ingredients. A moderate Pd addition can drastically improve the sulfur resistance and further improve the catalytic activity of the La-Cu-Co-O/cordierite catalyst.
    [Abstract] [Full Text] [Related] [New Search]