These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Liraglutide prevents beta-amyloid-induced neurotoxicity in SH-SY5Y cells via a PI3K-dependent signaling pathway.
    Author: Liu XY, Wang LX, Chen Z, Liu LB.
    Journal: Neurol Res; 2016 Apr; 38(4):313-9. PubMed ID: 27108910.
    Abstract:
    OBJECTIVES: The aim of the study was to investigate the effects of the GLP-1 analog liraglutide on beta-amyloid (Aβ)-induced neurotoxicity in the human neuroblastoma cell line SH-SY5Y and study the underlying mechanisms. METHODS: Cultured SH-SY5Y cells in vitro were randomly divided into normal control group, beta-amyloid (Aβ) group (20, 40, and 80 uM), and liraglutide pre-treatment group (10, 100, and 200 nM). Cell viability was determined by CCK-8 and lactate dehydrogenase (LDH). Based on its higher protection potentials, the effect of the liraglutide (100 nM) and wortmannin (200 nM) on beta-amyloid (Aβ) group (40 uM) damage in human SH-SY5Ycells was examined by DAPI fluorescence staining and flow cytometry. Caspase-3, Bcl-2, Bax, Cyt-C, Akt, and P-Akt expression were detected by western blotting. RESULTS: We found that exposure of SH-SY5Y to Aβ (25-35)-induced cytotoxicity, increased lactate dehydrogenase (LDH) leakage, and cellular apoptosis. Interestingly, pre-treatment with liraglutide reversed these reactions. Liraglutide afforded protection against Aβ (25-35)-induced toxicity by inhibiting apoptosis, which was also confirmed by the activated caspase-3 assay. P-Akt and Bcl-2/Bax expression increased after pre-treatment with liraglutide in SH-SY5Y cells exposed to Aβ (25-35), whereas cytochrome-c release decreased. This effect could be reversed by wortmannin, an inhibitor of PI3K (phosphoinositide 3-kinase). DISCUSSION: These findings suggest that liraglutide prevented Aβ (25-35)-induced neurotoxicity by inhibiting neuronal apoptosis and liraglutide may have a neuroprotective effect through activation of the PI3K/Akt signaling pathway. Thus, liraglutide may be a preventive or therapeutic agent for Alzheimer's disease.
    [Abstract] [Full Text] [Related] [New Search]