These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photosensitization of ZnO by AgBr and Ag2CO3: Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity. Author: Pirhashemi M, Habibi-Yangjeh A. Journal: J Colloid Interface Sci; 2016 Jul 15; 474():103-13. PubMed ID: 27111379. Abstract: Facile ultrasonic-irradiation method was applied for photosensitization of ZnO by combining with AgBr and Ag2CO3 particles through preparation of novel ternary nanocomposites. The prepared samples were characterized by XRD, SEM, TEM, EDX, UV-Vis DRS, FT-IR, BET, and PL techniques. Photocatalytic activity was investigated by degradation of rhodamine B under visible-light irradiation. It was found that photocatalytic activity of the ZnO was greatly enhanced by coupling with AgBr and Ag2CO3 particles, as narrow band gap semiconductors, through formation of tandem n-n heterojunctions. The nanocomposite with 20% of Ag2CO3 displayed the highest photocatalytic activity with the degradation rate constants which are nearly 122, 31, and 25 times higher than those of the ZnO, ZnO/AgBr, and ZnO/Ag2CO3 samples, respectively. Moreover, the trapping experiments confirmed that superoxide ion radicals and holes are the main active species responsible for the degradation reaction. Finally, it was also demonstrated that the ternary ZnO/AgBr/Ag2CO3 (20%) nanocomposite has enhanced activity in degradation of methylene blue and methyl orange. Hence, this work shows a great potential of the ternary photocatalyst for purification of contaminated water from organic pollutants.[Abstract] [Full Text] [Related] [New Search]