These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Frankincense--therapeutic properties.
    Author: Al-Yasiry AR, Kiczorowska B.
    Journal: Postepy Hig Med Dosw (Online); 2016 Jan 04; 70():380-91. PubMed ID: 27117114.
    Abstract:
    Recently, increasing interest in natural dietary and therapeutic preparations used as dietary supplements has been observed. One of them is frankincense. This traditional medicine of the East is believed to have anti-inflammatory, expectorant, antiseptic, and even anxiolytic and anti-neurotic effects. The present study aims to verify the reported therapeutic properties of Boswellia resin and describe its chemical composition based on available scientific studies. The main component of frankincense is oil (60%). It contains mono- (13%) and diterpenes (40%) as well as ethyl acetate (21.4%), octyl acetate (13.4%) and methylanisole (7.6%). The highest biological activity among terpenes is characteristic of 11-keto-ß-acetyl-beta-boswellic acid, acetyl-11-keto-ß-boswellic acid and acetyl-α-boswellic acid. Contemporary studies have shown that resin indeed has an analgesic, tranquilising and anti-bacterial effects. From the point of view of therapeutic properties, extracts from Boswellia serrata and Boswellia carterii are reported to be particularly useful. They reduce inflammatory conditions in the course of rheumatism by inhibiting leukocyte elastase and degrading glycosaminoglycans. Boswellia preparations inhibit 5-lipoxygenase and prevent the release of leukotrienes, thus having an anti-inflammatory effect in ulcerative colitis, irritable bowel syndrome, bronchitis and sinusitis. Inhalation and consumption of Boswellia olibanum reduces the risk of asthma. In addition, boswellic acids have an antiproliferative effect on tumours. They inhibit proliferation of tumour cells of the leukaemia and glioblastoma subset. They have an anti-tumour effect since they inhibit topoisomerase I and II-alpha and stimulate programmed cell death (apoptosis).
    [Abstract] [Full Text] [Related] [New Search]