These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural and biochemical characterization of the Bacillus cereus 3-hydroxyisobutyrate dehydrogenase. Author: Park SC, Kim PH, Lee GS, Kang SG, Ko HJ, Yoon SI. Journal: Biochem Biophys Res Commun; 2016 Jun 03; 474(3):522-527. PubMed ID: 27120461. Abstract: The 3-hydroxyisobutyrate dehydrogenase (HIBADH) family catalyzes the NAD(+)- or NADP(+)-dependent oxidation of various β-hydroxyacid substrates into their cognate semialdehydes for diverse metabolic pathways. Because HIBADH group members exhibit different substrate specificities, the substrate-recognition mode of each enzyme should be individually characterized. In the current study, we report the biochemical and structural analysis of a HIBADH group enzyme from Bacillus cereus (bcHIBADH). bcHIBADH mediates a dehydrogenation reaction on S-3-hydroxyisobutyrate substrate with high catalytic efficiency in an NAD(+)-dependent manner; it also oxidizes l-serine and 3-hydroxypropionate with lower activity. bcHIBADH consists of two domains and is further assembled into a functional dimer rather than a tetramer that has been commonly observed in other prokaryotic HIBADH group members. In the bcHIBADH structure, the interdomain cleft forms a putative active site and simultaneously accommodates both an NAD(+) cofactor and a substrate mimic. Our structure-based comparative analysis highlights structural motifs that are important in the cofactor and substrate recognition of the HIBADH group.[Abstract] [Full Text] [Related] [New Search]