These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Micromorphological changes and mechanism associated with wet ball milling of Pinus radiata substrate and consequences for saccharification at low enzyme loading. Author: Vaidya AA, Donaldson LA, Newman RH, Suckling ID, Campion SH, Lloyd JA, Murton KD. Journal: Bioresour Technol; 2016 Aug; 214():132-137. PubMed ID: 27131293. Abstract: In this work, substrates prepared from thermo-mechanical treatment of Pinus radiata chips were vibratory ball milled for different times. In subsequent enzymatic hydrolysis, percent glucan conversion passed through a maximum value at a milling time of around 120min and then declined. Scanning electron microscopy revealed breakage of fibers to porous fragments in which lamellae and fibrils were exposed during ball milling. Over-milling caused compression of the porous fragments to compact globular particles with a granular texture, decreasing accessibility to enzymes. Carbon-13 NMR spectroscopy showed partial loss of interior cellulose in crystallites, leveling off once fiber breakage was complete. A mathematical model based on observed micromorphological changes supports ball milling mechanism. At a low enzyme loading of 2FPU/g of substrate and milling time of 120min gave a total monomeric sugar yield of 306g/kg of pulp which is higher than conventional pretreatment method such as steam exploded wood.[Abstract] [Full Text] [Related] [New Search]