These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Actomyosin organization during cytokinesis: reversible translocation and differential redistribution in Dictyostelium. Author: Kitanishi-Yumura T, Fukui Y. Journal: Cell Motil Cytoskeleton; 1989; 12(2):78-89. PubMed ID: 2713900. Abstract: Synchronized cultures of Dictyostelium discoideum were used to study organizational changes of the cytoskeleton during mitotic cell division. The agar-overlay technique (Yumura et al.: J. Cell Biol. 99:894-899, 1984) was employed for immunofluorescence localization and video microscopic observation of living mitotic cells. The mitotic phase was defined by changes in chromosome configuration by using a double stain with the fluorescent dye DAPI. This study showed that the actin- and myosin-containing cytoskeleton was reversibly redistributed between the cortical ectoplasm and the endoplasm during prophase and telophase. Both actin and myosin filaments were dissociated from the cell cortex in prophase. Most of the actin and myosin was filamentous and remained in the endoplasm until telophase. Saltatory movements of organelles stopped suddenly, coincident with the breakdown of the cytoplasmic microtubule network. This change in the microtubule system was temporally coupled with the disappearance of actomyosin from the cortex. At the same time, the local vibrating movement of particles almost stopped, suggesting that the viscoelastic nature of the endoplasm was altered. In the late anaphase, actin and myosin relocalized to the cortical ectoplasm. Early in this phase, myosin filaments were localized specifically at the anticipated cleavage furrow region of the cleavage furrow, whereas actin filaments were redistributed more uniformly in the cell cortex, with an extremely large accumulation in the polar pseudopods. Subsequently the actin formed an orderly parallel array of cables along with myosin filaments in the contractile ring. The spatial segregation of actin and myosin in late anaphase was clearly demonstrated by multipolar cell division of artificially induced giant cells. Actin was relocalized in both the polar and the proximal constricting regions whereas myosin was only localized in the center of each pair of daughter microtubule networks where the cleavage furrow was formed. This study demonstrates that actin and myosin are reorganized by a temporally coordinated but spatially different mechanism during cytokinesis of Dictyostelium.[Abstract] [Full Text] [Related] [New Search]