These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fine mapping of a major locus controlling plant height using a high-density single-nucleotide polymorphism map in Brassica napus.
    Author: Wang Y, He J, Yang L, Wang Y, Chen W, Wan S, Chu P, Guan R.
    Journal: Theor Appl Genet; 2016 Aug; 129(8):1479-91. PubMed ID: 27147069.
    Abstract:
    A saturated map was constructed using SNP markers to fine-map a Brassica napus dominant locus for dwarf mutant onto a 152-kb interval of chromosome A09 containing 14 genes. Major dwarf loci in crops may play important roles in crop improvement and developmental genetics. The present study investigated and fine-mapped a Brassica napus dwarf-dominant locus BnDWF1. Plants carrying the BnDWF1 locus in populations derived from 'zhongshuang11' and Bndwf1 have deep-green leaves and dwarf architecture that differ sharply from tall plants with normal green leaves. BnDWF1, as a major locus controlling plant height, showed a very high heritability (0.91-0.95). To map this locus, a high-density single-nucleotide polymorphism map was constructed, and the BnDWF1 locus was mapped at an interval between single-nucleotide polymorphism markers, M19704 and M19695, on linkage group A09 of B. napus, with five co-segregating single-nucleotide polymorphism markers. Furthermore, fine mapping narrowed the interval harboring BnDWF1 to 152 kb in length in B. napus. This interval contains 14 annotated or predicted genes, seven of which are candidates responsible for the dwarf trait. This study provides an effective foundation for the study of plant height regulation and plant type breeding in B. napus.
    [Abstract] [Full Text] [Related] [New Search]