These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photoelectrochemical Conversion from Graphitic C3N4 Quantum Dot Decorated Semiconductor Nanowires. Author: An T, Tang J, Zhang Y, Quan Y, Gong X, Al-Enizi AM, Elzatahry AA, Zhang L, Zheng G. Journal: ACS Appl Mater Interfaces; 2016 May 25; 8(20):12772-9. PubMed ID: 27149607. Abstract: Despite the recent progress of developing graphitic carbon nitride (g-C3N4) as a metal-free photocatalyst, the synthesis of nanostructured g-C3N4 has still remained a complicated and time-consuming approach from its bulk powder, which substantially limits its photoelectrochemical (PEC) applications as well as the potential to form composites with other semiconductors. Different from the labor-intensive methods used before, such as exfoliation or assistant templates, herein, we developed a facile method to synthesize graphitic C3N4 quantum dots (g-CNQDs) directly grown on TiO2 nanowire arrays via a one-step quasi-chemical vapor deposition (CVD) process in a homemade system. The as-synthesized g-CNQDs uniformly covered over the surface of TiO2 nanowires and exhibited attractive photoluminescence (PL) properties. In addition, compared to pristine TiO2, the heterojunction of g-CNQD-decorated TiO2 nanowires showed a substantially enhanced PEC photocurrent density of 3.40 mA/cm(2) at 0 V of applied potential vs Ag/AgCl under simulated solar light (300 mW/cm(2)) and excellent stability with ∼82% of the photocurrent retained after over 10 h of continuous testing, attributed to the quantum and sensitization effects of g-CNQDs. Density functional theory calculations were further carried out to illustrate the synergistic effect of TiO2 and g-CNQD. Our method suggests that a variety of g-CNQD-based composites with other semiconductor nanowires can be synthesized for energy applications.[Abstract] [Full Text] [Related] [New Search]