These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia. Author: Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Barhoumi F, Jebara M, Jebara SH. Journal: Ecotoxicol Environ Saf; 2016 Aug; 130():263-9. PubMed ID: 27151677. Abstract: PGPBs-legumes associations represent an alternative procedure for phytostabilisation of heavy metals polluted soils mainly generated by industrial and agricultural practices. In this study we evaluated the capacity of Vicia faba, Lens culinaris and Sulla coronaria, inoculated in situ by specific heavy metals resistant inocula, for the phytostabilisation of copper, lead and cadmium respectively. The experimentation was performed in mine tailings of northern Tunisia. Results proved that inoculation enhanced roots and shoots biomass production of faba bean by 14% and 12%, respectively, and significantly improved pods yield by 91%. In lentil, the inoculation ameliorated shoot biomass up to 27%. The highest nitrogen fixation was recorded by Sulla coronaria. The three symbioses accumulated heavy metals essentially in roots, and poorly in shoots. In addition, cadmium accumulation in roots of inoculated sulla was enhanced by 39%. Furthermore, inoculations decreased heavy metals availability in the soil up to -10% of Cu and -47% of Pb respectively in roots of faba bean and lentil. Our results suggested a positive effect of co-inoculation of legumes by appropriate heavy metals resistant PGPBs for the phytostabilisation of mine tailings. Elsewhere, the enhancement in the antioxidant enzymes activities demonstrated the role of the three inocula to alleviate the heavy metals induced stress.[Abstract] [Full Text] [Related] [New Search]