These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of Ge-132 and GeO2 on seed germination and seedling growth of Oenothera biennis L. under NaCl stress. Author: Liu Y, Hou LY, Li QM, Jiang ZP, Gao WD, Zhu Y, Zhang HB. Journal: Environ Technol; 2017 Jan; 38(1):85-93. PubMed ID: 27152861. Abstract: To investigate the effects of β-carboxyethyl germanium sequioxide (Ge-132) and germanium dioxide (GeO2) on improving salt tolerance of evening primrose (Oenothera biennis L.), seed germination, seedling growth, antioxidase and malondialdehyde (MDA) were observed under treatments of various concentrations (0, 5, 10, 20, 30 μM) of Ge in normal condition and in 50 mM NaCl solution. The results showed that both Ge-132 and GeO2 treatments significantly increased seed germination percentage and shoot length in dose-dependent concentrations but inhibited early root elongation growth. 5-30 μM Ge-132 and 10, 20 μM GeO2 treatments could significantly mitigate even eliminate harmful influence of salt, representing increased percentage of seed germination, root length, ratio between length of root and shoot, and decreased shoot length. These treatments also significantly decreased peroxidase (POD) and catalase (CAT) activities and MDA content. The mechanism is likely that Ge scavenges reactive oxygen species - especially hydrogen peroxide (H2O2) - by its electron configuration 4S24P2 so as to reduce lipid peroxidation. This is the first report about the comparison of bioactivity effect of Ge-132 and GeO2 on seed germination and seedling growth under salt stress. We conclude that Ge-132 is better than GeO2 on promoting salt tolerance of seed and seedling.[Abstract] [Full Text] [Related] [New Search]