These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The insulin-signaling pathway of the pancreatic islet is impaired in adult mice offspring of mothers fed a high-fat diet.
    Author: Bringhenti I, Ornellas F, Mandarim-de-Lacerda CA, Aguila MB.
    Journal: Nutrition; 2016 Oct; 32(10):1138-43. PubMed ID: 27155954.
    Abstract:
    OBJECTIVE: Mothers fed a high-fat (HF) diet can cause different adverse alterations in their offspring. The study aimed to verify the pancreatic islet structure and insulin-signaling pathway in adulthood of offspring of mothers fed a HF diet during the pregnancy. METHODS: Female mice (mothers) were randomly assigned to receive either standard chow (Mo-SC) or a HF diet (Mo-HF) ad libitum. After 2 mo on the experimental diets, 3-mo-old female mice were mated with male C57 BL/6 mice that were fed a SC diet. The male offspring was evaluated at 6 mo old. RESULTS: At 6 mo of age, Mo-HF offspring had an increment in body mass and adiposity, hypercholesterolemia, and hypertriacylglycerolemia, higher levels of insulin, and leptin with a concomitant decrease in adiponectin levels. In the islet, we observed an alteration in the structure characterized by the migration of some alpha cells from the edge to the core of the islet in association with an increase in the masses of the islet, beta cell, and alpha cell, featuring a pancreatic islet remodeling. Additionally, the Mo-HF offspring demonstrated a decrease in IRS1, PI3 k p-Akt, Pd-1, and Glut2 protein expressions compared to Mo-SC offspring. However, an increase was observed in FOXO1 and insulin protein expressions in Mo-HF offspring compared to Mo-SC offspring. CONCLUSION: The present study demonstrated that a maternal HF diet is responsible for remodeling the islet structure coupled with an adverse carbohydrate metabolism and impairment of the insulin-signaling pathway in adult male mice offspring.
    [Abstract] [Full Text] [Related] [New Search]